Exercise 34

Use the Intermediate Value Theorem to show that there is a root of the equation in the given interval.

$$
\cos \sqrt{x}=e^{x}-2, \quad(0,1)
$$

Solution

Bring all terms to one side.

$$
\cos \sqrt{x}-e^{x}+2=0
$$

Let $f(x)=\cos \sqrt{x}-e^{x}+2$. The cosine, exponential, and constant functions are continuous at all numbers in the same domain, $(-\infty, \infty)$. The square root function is also continuous but on its own restricted domain, $[0, \infty)$. Consequently, $f(x)$ is continuous on $[0, \infty)$, which includes the closed interval $[0,1]$. Find a value of x in this closed interval for which $f(x)$ is negative, and find a value of x in this closed interval for which $f(x)$ is positive.

$$
\begin{aligned}
& f(0)=\cos \sqrt{0}-e^{0}+2 \approx 2 \\
& f(1)=\cos \sqrt{1}-e^{1}+2 \approx-0.180
\end{aligned}
$$

$N=0$ lies between $f(0)$ and $f(1)$, so by the Intermediate Value Theorem, there exists a root in the open interval $(0,1)$.

